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LElTER TO THE EDITOR 

Random walk on self-avoiding walk: 
a model for conductivity of linear polymers 

Debashish Chowdhuryt and B K ChakrabartiS 
Institut fur Theoretische Physik, Universitat zu Koln, Zulpicher Strasse 77, D-5000 Koln 
41, West Germany 

Received 19 February 1985 

Abstract. Random walks on self-avoiding walks (SAWS) are studied here using Monte 
Carlo techniques on a square lattice (with nearest-neighbour hopping along the chain and 
between SAW points which are nearest neighbours on the embedding lattice). The average 
of the square of the end-to-end distance for random walks of r steps on SAWS of length 
N is fitted to the scaling forms ( R : ) a  N*rk (for t<c N e )  and ( R : ) a  N2”s (for tB N e ) ,  
where O=2vs /k ;  v, being the average end-to-end distance exponent for SAWS. The 
observed value of the exponent 6 is supported by our real space renormalisation group 
result for the conductivity of SAW chains. The exponent k has been related to the ‘effective’ 
fractal dimension of the SAW chain. 

The phenomenon of diffusion (i.e., random walk (RW)) on Euclidean lattices is quite 
well understood (see e.g., Weiss and Rubin 1983). However, diffusion on fractal lattices 
is now an active field of research. So far most of the attention has been focused on 
diffusion on percolation clusters (see, e.g., Stauffer (1985) and the references therein, 
Havlin 1984, Stanley et a1 1984). The latter is an example of the so-called statistical 
fractals (Rammal 1984). In this letter we shall study diffusion on another statistical 
fractal, namely the self-avoiding walk (SAW). 

It is well known that the SAW is a good model for linear polymers in dilute solution 
(de Gennes 1979). Therefore, the diffusion on SAWS is expected to throw light on the 
nature of the electrical conduction in linear polymers (Etemad et a1 1982). Some 
aspects of such investigations are directly related to the phonon density of states of 
some proteins, e.g., haemoproteins (Helman et a1 1984). In fact, a numerical study of 
this aspect of the RW on SAWS has already been attempted (Yang et a1 1985). Some 
other aspects of this study lead to the molecular weight dependence of the conductance 
of polymer chains (Ball and Cates 1984). In this letter we investigate the detailed 
scaling form for the RW on SAWS, which incorporates both the aspects mentioned 
above. Also, the static and dynamic critical behaviour of Ising and Heisenberg spins, 
with nearest-neighbour interaction, on such SAW chains have been studied recently 
(Bhattacharya and Chakrabarti 1984a,b, Chakrabarti et a1 1985). The problem of 
diffusion on such SAW chains should also throw light on the critical dynamics of various 
(diffusive) modes in such systems. 

t Alexander von Humboldt Postdoctoral Fellow. 
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First of all let us clarify that the diffusion problem considered here is non-trivial. 
Indeed, it is much more complicated than diffusion on an ordered one-dimensional 
lattice. Consider, for example, the SAW configuration shown in figure l (a) .  Each of 
the segments between nearest neighbours along the SAW will be called a ‘street’. If we 
allow a RW only along the streets, it would, of course, be equivalent to a RW on an 
ordered one-dimensional lattice. However, in addition to hop along the ‘streets’ (full 
line in figure l (a ) )  we shall also allow the random walker to hop along the ‘bridges’ 
(broken lines in figure l (a ) ) ,  the latter being the bonds between the sites which are 
not nearest neighbours along the SAW but nearest neighbours on the embedding lattice 
(in figure 1 ( a ) ,  for example, on the square lattice). For the sake of simplicity we shall 
assume that the hopping probability along the streets and along the bridges are identical. 
In real physical systems, e.g., in haemoproteins, of course, the physical bonding along 
the streets and across the bridges may be of different character giving rise to differences 
in the corresponding hopping probabilities for the random walker (cf Helman et a1 
1984). 
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Figure 1. ( a )  A section of a typical SAW configuration. The full line denotes the ‘streets’ 
and the broken lines denote the ‘bridges’. ( b )  The equivalent one-dimensional chain. 
Along the full line nearest-neighbour hoppings and along the broken lines Levy-like Bights 
are allowed for the random walker. 

Let P , ( t )  be the probability that the diffusing particle (the random walker) is at 
the site n at time t. The master equation governing the motion of the particle can be 
written as 

dPn( t ) /d t=C T n m f ‘ m ( t ) - C  G “ n ( t ) ,  (1) 
where the first and second terms on the right-hand side of equation ( 1 )  correspond to 
the gain and loss of probability, respectively, and Tn, is the probability of transition 
from the site m to site n. In the absence of any external bias, the transition probability 
is supposed to be symmetric, i.e., Tn, = Tmn. We also assume T,, to be site-independent 
and denote it by T.  Let us now stretch out the SAW chain into a straight line segment 
as shown in figure l ( b ) .  The difference between the nearest-neighbour hopping RW 

and the present problem is now clear; the latter allows hopping even between non- 
nearest neighbours on the straight line in figure l (b) ,  e.g., between the sites 2 and 5.  
It is straightforward to show that 

( 2 )  d(Pn ( t))/dt = T( 1 + P )((pn + 1)  + ( p n  - 1) - 2( pn )) 
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where 2 p  is the probability that an arbitrary site on the SAW has more than two nearest 
neighbours also lying on the SAW and the bracket ( ) denotes the average over SAW 

configurations. Note that equation (2) is effectively identical with a one-dimensional 
nearest-neighbour-hopping RW with an enhanced effective transition probability W = 
T (  1 + p ) .  One can write Z,, = I / [  T(  1 + p ) ]  as the effective coordination number of a 
lattice where the RW can be looked upon as a nearest-neighbour-hopping RW. Express- 
ing the total number GN of SAW configurations of N steps as GN oc uNNy-* (de Gennes 
1979), one can express Z,, (for N + a)) as Z,, = 2+  (Z - 1) - U, where Z is the coordina- 
tion number of the embedding Euclidean lattice (Bhattacharya and Chakrabarti 1984a). 
This, together with the link-and-blob picture of the SAW at all length scales, gives rise 
to its fractal nature. 

The RW considered in this letter has some similarities with the random Levy walks 
(Mandelbrot 1983) where the random walker can occassionally make long jumps, 
although nearest-neighbour hoppings are more frequent. The aim of this work is, in 
other words, to study the effect of Levy-like flights (e.g. those between 2 and 5 in figure 
l (b))  on the critical behaviour of the RW in one dimension. 

The scaling law for the square of the end-to-end distance of an N-step RW, 
considered here, can be expressed as 

(R:) a: N8tk, for t<c Ne, (3) 

where 6 and k are two critical exponents and 8 = (2u ,  - S ) / k ;  U, being the exponent 
for the average end-to-end distance (RSAW) of SAW. The restriction t << Ne arises from 
the condition (RI)<< (RSAW); for t = Ne, (RI) becomes of the order of (RSAW). According 
to the Einstein relation the conductivity is proportional to the diffusivity. Thus, if the 
total resistance rN of a SAW chain of length N grows as Np,  then we speculate that 

S=l-/.L, k =  1, 

when (R:) is measured along the SAW. If now ( R : )  is measured in the embedding 
Euclidean lattice 

6 = (1 - /.L) US, k =  vs (4) 

where vs is the inverse fractal dimensionality, d;’ for SAW (Mandelbrot 1983). However, 
due to the hopping across the ‘bridges’ (Levy-like flights), the effective fractal ‘seen’ 
by the random walker will have a fractal dimensionality different from that of the SAW 

chain. We shall come to this point later. It may be noted that for t very large compared 
to N, (R:) should saturate to 

( R : ) x  N2”s for t +  Ne. ( 5 )  

In this letter we shall estimate the conductivity exponent S by a small cell real 
space renormalisation group ( RSRG) technique. Next, we shall measure ( R : )  from 
Monte Carlo study of RW on Monte Carlo generated SAWS. The values of the exponents 
6 and k, so obtained, will be compared with the RSRG results and with earlier estimates 
of 6 (Ball and Cates 1984) and k (Helman et a1 1984, Yang et a1 1985). We have also 
studied the crossover between (3) and ( 5 ) .  

The renormalised fugacities f’ (cf Stanley et a1 1982) and renormalised resistance 
r’ (cf Stinchcombe and Watson 1976) for the cells shown in figure 2 can be written as 

(6) f* = 2 f 2  + 2 f 3 ,  r’f = 4rf2 + 2rf3 
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for the triangular lattice cell (figure 2( a ) )  with scale factor b = h, 
f = f 2 + 2 f 3 + y  

r’f’ = 2 rf’ + 6rf3 +if ( 7 )  

for the square lattice cell (figure 2( b)) with b = 2, and 

f = f 3 + 3 f + 9f 5 + 5p + 9 f7 + 2 f 3y 
(8) 

r ’ f  = 3 rf’ + 1 2rf4 + yrf5 + 7i-p + q r f ’  + $rf8+ Fry 
for the square lattice cell (figure 2(c)) with b = 3. The non-trivial fixed point (f”) and 
exponents (given by (af’/af)* = b‘/”s and (ar’ /dr)* = b p / ” r )  are given in table 1. Our 
extrapolated RSRG result thus indicates p = 0.88, giving S = ( 1  - p )  U, = 0.09 for SAWS 

on two-dimensional lattices. 

la1 (bl (C) 

Figure 2. The original and the renormalised cells for ( a )  triangular lattice with b = h, ( b )  
square lattice with b = 2, ( c )  square lattice with b = 3. 

Table 1. Nontrivial fixed point and exponents vr =/I. 
~~ 

Lattice b P vs /I 

Triangular J5 0.37 0.67 0.69 
Square 2 0.47 0.72 0.9 1 
Square 3 0.45 0.72 0.90 

We generated SAWS of step sizes (N) from 10 to 75, on a square lattice, by the 
usual Monte Carlo method. In order to check the nature and also the size of the 
ensemble (number of configurations sufficient for reasonable average) for SAWS of 
various step sizes N, the average end-to-end distance exponent v, was computed. The 
value obtained agreed well with the exact value v, = 0.75 (for dimension d = 2 of the 
embedding Euclidean lattice) within the limits of computational accuracy. RWS of step 
sizes ( t  << N e ,  in practice, t a N for reasons discussed later) from 7 to 70 were generated 
on these SAWS (also by Monte Carlo methods). Configurational averaging of the square 
of the end-to-end distance R: of the RW was performed by varying (a) the starting 
point of the RW on a given SAW configuration and then, (b) repeating procedure (a) 
for a large number (larger than the mrresponding ensemble size mentioned earlier) 
of SAW configurations. The total number of RW configurations thus generated, for each 
given values of N and f ,  was 25 000 for N d 62 and more than 15 000 for N > 62. 

Fitting these results for (R:) with the scaling equation (3) for different N and t 
values, the exponents k (see figure 3) and S were determined. We get k = 0.72 and 
6 =0.1. 

The temperature dependence of the spin-lattice relaxation times of Fe3+ ions in 
haemoproteins and ferredoxin suggests (Helman et al 1984) that the phonon density 
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Figure 3. Log-log plot of ( R : )  against r for different values of N (0, N = 33; A,  N = 50; 
V, N = 62; 0, N = 75). The slope of the curve gives the exponent k = 0.72. 

of states p ( w )  for such proteins (polymer) chains varies at low frequencies as U‘S-’ 

where the spectral dimensionality d,  ( = 2d,/d,)  for such SAW chains, with ‘bridges’, 
turns out to be equal to its fractal dimensionality d f  ( = v;’). Helman et al, therefore, 
concluded that due to the presence of these ‘bridges’ the RW might effectively ‘see’ the 
embedding Euclidean lattice, giving thereby k ( = 2 /d , )  = 1. Our Monte Carlo result 
k-0.72 does not support this speculation. Yang et a1 (1985) also reports a lower 
value of k = 0.75 = v,. (They did not distinguish between the N and t dependences of 
(R;).) We get an even lower value ( k - 0 . 7 2 ) .  This, we believe, is a definite effect of 
the diffusion across the ‘bridges’ (Levy-like flights). Due to the latter effect, RWS 

effectively diffuse through the shortest nearest-neighbour connecting path of a SAW 

chain. Knowing the length IN oc N E  for such a shortest path of an N-step SAW, where 
E = 0.98 for d = 2 (Bhattacharya and Chakrabarti 1984a) one can estimate k by 
replacing k in equation ( 5 )  by k = V,E (=0.73 for d = 2 ) .  This result is in good agreement 
with our observation. 

In an earlier communication, Ball and Cates (1984) suggested that the resistance 
of a SAW chain grows as rN OC N plus correction terms, so that p = 1 and S = 0. However, 
the plot of Monte Carlo results for fixed values of RW step size t indicates a small, 
yet non-zero, value of S ( ~ 0 . 1 ) .  This value of 6 compares well with our RSRG result 
S = 0.09. Although their field-theoretic treatment indicated that p is slightly less than 
unity (for d < 4), Ball and Cates argued that the dominant term in r, should be linear 
in N. The latter arose from their ‘picture’ of a typical SAW configuration, which consists 
of distant blobs (sites on a SAW connected multiply, on a ‘small’ scale, by the ‘bridges’) 
connected essentially by linear (singly connected) links. However, such a picture of 
nearest-neighbour connected SAW is not self-similar. The self-similarity requires the 
blobs to be connected by links at all length scales, thereby excluding the possibility 
of essentially singly connected regions. 

As mentioned earlier, our study was essentially restricted to the case t = s  N. In 
order to study the crossover between the behaviours (3) and ( 5 ) ,  we plotted (see figure 
4) (R:) against t for a fixed value of N ( =  33). It shows that for t = ~  N the asymptotic 
form (3) remains valid whereas for t 2  Ne, (R;) saturates to the limiting form ( 5 ) .  
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Figure 4. Log-log plot of ( R : )  against f for fixed N ( = 33). The initial slope of the curve 
is 0.72 (broken straight line). The deviation, starting near f = N, from the broken line 
indicates the beginning of the crossover region. 
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